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Abstract

Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for

customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying

nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake

squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it

possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake

system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the

dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are

preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that

works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits

the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the

classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the

stationary nonlinear system.

The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system

under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are

performed and the results are compared with a classical variable order solver integration algorithm.

Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to

demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate

the effects of the friction coefficient, piston pressure, nonlinear stiffness and structural damping.
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1. Introduction

Disc brake squeal is a complex phenomenon and has been a challenging issue for many researchers for a
long time. There is no precise definition of brake squeal [1], but it could be defined as a monoharmonic sound
emitted at a frequency over a range of 1–20 kHz during a braking event. Squeal is a fugitive noise, i.e. at each
braking action a brake system may or may not be noisy. Although brake squeal is undesirable, it is the sign
that the brake is reliable [2]. Ouyang et al. [3] demonstrated that parametric resonances can occur when an
elastic element is rotated around an annular disc with friction having a negative slope with velocity. They also
indicated that an elastic system can oscillate in the stick-slip mode (which is a low sliding speed phenomenon
caused when the static friction coefficient is higher than the dynamic coefficient) in the plane of a disc due to
nonsmooth friction nonlinearity [4]. Spurr [5] analyzed squeal as a sprag-slip phenomenon. He indicated that
the tribological property cannot be considered as the only reason for brake squeal, and that vibration could
occur when the friction coefficient remains fairly constant with speed. Later, the sprag-slip phenomenon was
generalized as a geometrically induced or a kinematic constraint instability. For example, Jarvis and Mills [6]
and Millner [7] worked on mass-spring models and showed that autonomous vibrations are due to friction
that couples two modes together; thus, instability occurs even if the friction coefficient is constant. Brake
squeal has been identified by Oden and Martins [8] as a result of friction-induced vibration. Hence, if friction
force couples two degrees of freedom (dof), unstable modes could merge and generate squeal. Liles [9] studied
a large finite element model and confirmed that brake squeal is due to the friction coupling effect, leading to
mode coalescence. The friction coefficient appears to be the essential parameter for detecting squeal
phenomena. Moreover, Ouyang et al. [10] proposed to study the stability analysis of a car disc brake system
(with pads, calliper and mounting) by considering a combined analytical and numerical method that uses the
finite element method.

Stability analysis is a classical method for studying the brake squeal phenomenon [9,11–14]. An analytical
finite element model with nonlinear contents such as contact and frictional elements is considered. A complex
eigenvalue computation of the respective linearized system is then performed, followed by a study of the
corresponding real parts. A positive real part indicates that the corresponding eigenmode is unstable and
squeal may occur. Parametric studies are carried out and several design criteria are derived. However, as
mentioned by Ouyang et al. [15], eigenvalue calculation is insufficient due to linearization which provides valid
results only close to the steady sliding state. The real part of an eigenvalue indicates the growth rate of
oscillations; however, it does not provide information on the amplitude of the dynamic response [9].
Moreover, eigenvalues analysis overestimates the number of unstable modes and they cannot all be observed
in experiments [16]. Finally, the starting vibration mechanism is unknown. As a result, transient analysis is the
natural second step in studying brake squeal. Contrary to eigenvalue analysis, transient analysis can include
nonlinear aspects of the model. The models can be refined and the use of time-dependent loading,
sophisticated friction laws and so on is possible. Better qualitative and quantitative results are derived,
considerably contributing to the improvement of brake systems. A large number of transient analyses of finite
element models have been performed in the past. Nagy et al. [17] were one of the first to perform a numerical
integration in a finite element disc brake. Chargin et al. [18] carried out a transient computation on a very
simple brake system by using an implicit integration scheme. Mahajan et al. [19] ran both complex and
temporal approaches and found that both methods are useful for design modifications. Hu et al. [20]
performed an explicit time integration analysis combined with Taguchi’s method and found that the
characteristics of friction materials are an important factor, along with rotor thickness, pad chamfer and pad
slot. More recently, Massi et al. [16] performed a dynamic transient computation on a large dofs disc brake
model with an in-house finite element code and correlated the modal complex analysis with the time
simulation in the sense that the vibrating steady state matched one of the unstable modes found in the complex
analysis. The major drawback of the works mentioned above concerns the excessive calculation time required
to obtain the stationary state of oscillations, which penalizes design modifications. Shorter computation times
can be achieved with these methods at the cost of over-simplified finite element models. AbuBakar and
Ouyang [21] performed a transient analysis for three different contact regimes in ABAQUS and found only
one that gives acceptable results, i.e. the oscillation frequency is similar to one of the results obtained by
complex analysis. Computation took more than 24 h before calculations diverged. One way of tackling these
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drawbacks is to carry out the solution in the frequency domain. A very well-known method for solving
nonlinear problems is the Harmonic Balance Method (HBM) in combination with the Alternate Frequency
Time Domain Method proposed by Cameron and Griffin [22]. This method has been used by many authors to
solve nonlinear problems [23–26]. The key factor of HBM is the computation of the steady-state solution
without the transient part. HBM is well designed for systems under periodic excitations. It is less time
consuming and requires less disc storage. In the particular case of self-excited systems subjected to Hopf
bifurcations, it is slightly more complicated to apply this method since the uniqueness of the solution is lost
[11] and both static and dynamic solutions coexist. Hence, the system is driven only by initial conditions and
leads to a unique final solution. In an optimization domain that corresponds to two local minima the solver
computes either the static solution or the dynamical one without any control, but the static solution is always
reached whatever the initial conditions. This reflects the fact that the static solution corresponds to an ‘‘exact
solution’’ of the nonlinear system in the Fourier domain (the solution is only composed by the static Fourier
coefficients), whereas the dynamic solution will be an approximation of the nonlinear system due to the
truncated Fourier series. This is a major drawback that has been tackled in this study.

In this paper, we propose a novel nonlinear approach, called the Constrained Harmonic Balance Method
(CHBM), that works for nonlinear systems subjected to flutter instability. An additional constraint-based
condition is proposed for predicting both the Fourier coefficients and the fundamental frequency of the
stationary nonlinear dynamic system amplitudes, called the ‘‘limit cycles amplitudes’’.

This paper is divided into four sections. The first one deals with the presentation of the brake system under
study. Secondly, the stability analysis of the nonlinear brake system is performed. The third part concerns the
nonlinear analysis with the CHBM and the results are compared with a classical temporal integration scheme.
The advantages and drawbacks of both methods are discussed. The last one is devoted to parameter analyses
where the advantages of the new CHBM are illustrated.

2. Finite element model of the brake system

Fig. 1 shows the finite element model of the car front brake under consideration, developed using the
ABAQUS finite element software package. The model consists of the two main components contributing to
squeal: the disc (see Fig. 1(a)) and the pad (see Fig. 1(b)). There are about 60,000 nodes and ten-node
quadratic tetrahedron elements are used. They are very useful for meshing complex shapes and are second-
order elements which provide accurate results without requiring very fine meshing [27].

2.1. Model reduction

As seen previously in Fig. 1, finite element models of the two brake components need a large number of dofs
to represent geometrical details of the brake system. One of the first classical processes is to reduce the finite
Fig. 1. Finite element models of the brake system (a) pad and (b) disc.
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element models of the pad and disc by using a Craig and Bampton technique [28] for retaining certain contact
nodes and generalized dofs.

It consists in building a projection basis combining constraint modes TC and a truncated basis Tj;N of
normal modes computed with a fixed interface. Hence, the relationship between physical boundaries
(or interface dofs) uB, interior dofs uI , modal coordinates of constraint modes qB and modal coordinates of
normal modes qj is given by

u ¼
uB

uI

( )
¼ ½TC Tj;N �

qB

qj

( )
(1)

The constraint modes TC are computed by assuming unit displacements onto uB

KBB KBI

KIB KII

" #
huBi

uI

( )
¼

RB

h0i

( )
, (2)

where h i denotes prescribed quantities. Then the corresponding under-space for the static condensation is
written as

TC ¼
I

�K�1II KIB

" #
(3)

where I defines the identity matrix. Tj is achieved by resolving an eigenvalue problem with fixed interface
dofs uB

�o2
MBB MBI

MIB MII

" #
þ

KBB KBI

KIB KII

" # !
h0i

uI

( )
¼

Rj

h0i

( )
(4)

where h i denotes prescribed quantities. Finally, Tj;N is deduced by retaining N modes computed in Eq. (4) as

Tj;N ¼
0

u1:N ;I

" #
(5)

Finally, stiffness matrix K̂ and mass matrix M̂ are given by

K̂ ¼ ½TC Tj;N �
T

KBB KBI

KIB KII

" #
½TC Tj;N � ¼

K̂CC 0

0 K̂NN

" #
(6)

M̂ ¼ ½TC Tj;N �
T

MBB MBI

MIB MII

" #
½TC Tj;N � ¼

M̂CC M̂CN

M̂NC M̂NN

" #
(7)

where 0 defines the zero matrix. For the sake of convenience, in the following part of the paper the hat above
the reduced matrices is deleted. Nine contact nodes are retained on each structure at the disc/pad interface and
four extra nodes are retained on the back-pad where piston force is applied. Moreover, the first 50 modes of
each structure are held. Boundary conditions are achieved by embedding a disc in the hub while the pad is only
free to translate in the normal contact direction. The resulting model is a 158 dofs system.

2.2. Nonlinear system

Many contact definitions could be used to model the contact between structures in finite element models but
the simplest is the penalty method mentioned by Ouyang in his review [15]. It consists in adding contact
stiffness at the disc/pad interface. The frictional material is a mixture of many components and is about one
thousand times less stiff than the disc; thus, its deformation under loading is greater and nonlinearity behavior
arises. Thus, contact stiffnesses values are chosen to fit the first and the third order of the pad compression
curves obtained in the tests.
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The computation of the nonlinear contact force takes the form:

F contact ¼
klðUi �UjÞ þ knlðUi �UjÞ

3 if ðUi �UjÞ40;

0 otherwise

(
(8)

with kl and knl being linear and nonlinear contact stiffnesses, respectively, and Ui and Uj being displacements
of interfaces nodes i and j that are related to the pad and the disc, respectively. The friction forces are deduced
from the contact forces by using the classical Coulomb law. A permanent sliding state is considered and a
constant friction coefficient is assumed:

F friction ¼ mF contact sgnðvrÞ (9)

with m being the friction coefficient and vr the relative velocity between both bodies.
Thus, the vectors of the nonlinear forces take the form:

FnlðxÞ ¼ FcontactðxÞ þ FfrictionðxÞ (10)

Hence, the reduced final model of the brake system is written as

M €xþ C _xþ Kxþ FnlðxÞ ¼ Fpiston (11)

where x is the response displacement of dofs, the dot denotes the derivation with respect to time and M, C and
K are, respectively, the mass, damping and stiffness matrices of the system. Fpiston is the piston pressure force
and vector FnlðxÞ corresponds to nonlinear forces. C is built by projecting the modal damping matrix D onto
the undamped, non-frictional inverse modal basis U�1 of the reduced model:

C ¼ U�1
T

DU�1 (12)

The modal damping matrix D is built so that modal damping is added on both the modes involved in the
instability. Initially, an equal damping distribution is considered:

D ¼ diagð0 . . . 0D1 D2 0 . . . 0Þ (13)

with D1 ¼ D2 ¼ 1.

3. Stability analysis

As mentioned before, the stability analysis is the first step for studying nonlinear systems subjected to
instability phenomena. For a given set of parameters, a static equilibrium position can become unstable and
stationary periodic oscillations, called limit cycles, occur.

This analysis is performed in two steps [29]. The first one consists in performing the static loading of the
system defined in Eq. (11) corresponding in an action by the driver on the brake pedal. Pressure is applied onto
the piston which acts on the pads entering into contact with the disc. The corresponding nonlinear static
equation is written as

Kx0 þ Fnlðx0Þ ¼ Fpiston (14)

where x0 corresponds to the static equilibrium of the nonlinear brake system. Note that the static equilibrium
is achieved with a non-zero rotational disc speed involving friction forces.

Then system (11) is linearized about the static equilibrium position x0 by using the perturbation technique.
The perturbation is

x ¼ x0 þ x̄ (15)

Replacing Eq. (15) into Eq. (11) leads to

M €̄xþ C _̄xþ Kðx0 þ x̄Þ þ Fnlðx0 þ x̄Þ ¼ Fpiston (16)

Supposing that Fnl belongs to the C1 class, developing the nonlinear force as a Taylor series and retaining the
first order leads to

Fnlðx0 þ x̄Þ � Fnlðx0Þ þ KL
NLx̄ (17)



ARTICLE IN PRESS
N. Coudeyras et al. / Journal of Sound and Vibration 319 (2009) 1175–11991180
KL
NL corresponds to the linearized nonlinear forces Jacobian matrix which is composed by the following

elementary matrix for each contact element:

KL
NLij
¼

qFnli

qxi

����
x0

qFnli

qxj

����
x0

qFnlj

qxi

����
x0

qFnlj

qxj

����
x0

2
66664

3
77775 (18)

And writing kli
¼

qFnli

qxi

���
x0

, the elementary stiffness matrix takes the following form:

KL
NLij
¼

0 �mkli
0 0 mkli

0

0 kli
0 0 �kli

0

0 0 0 0 0 0

0 mkli
0 0 �mkli

0

0 �kli
0 0 kli

0

0 0 0 0 0 0

2
666666664

3
777777775

(19)

It should be pointed out that the friction force is only written in the x direction that corresponds to the
longitudinal direction of the vehicle. Hence, the nonlinear system (11) is approximated at the equilibrium
position by the following linearized one:

M €̄xþ C _̄xþ ðKþ KL
NLÞx̄ ¼ 0 (20)

The previous model (20) is then written in the following state-space and complex eigenvalues are derived:

A ¼
0 I

�M�1ðKþ KL
NLÞ �M

�1C

" #
(21)

Since the stiffness matrix (19) is asymmetrical due to the contribution of friction forces, the computed
eigenvalues are complex and are written as

l ¼ aþ io (22)

where a is the real part of the eigenvalue that corresponds to the growth rate of the amplitude and o is the
imaginary part of the eigenvalue that corresponds to the pulsation of the mode. A negative real part indicates
that the corresponding mode is stable. In other words, a perturbation about the static equilibrium sliding state
will not modify the equilibrium position of the system. A positive real part equivalent to a negative damping
leads to an unstable mode. Thus, modifying one of the parameters will induce growing oscillations about the
static equilibrium position of the system until the dynamical steady state is reached. Fig. 2 shows evolutions of
normalized real parts and normalized frequencies of the associated eigenvalue versus m, which is normalized
with respect to the Hopf bifurcation point m0. As can be seen in Fig. 2(a), the real part curves split into two
branches near the Hopf bifurcation point m0. One goes towards the positive real part half-space and becomes
positive whereas the other branch decreases and remains in the negative real part half-space. Fig. 2(b) shows
the typical lock-in phenomenon between both modes of the system with increasing m. It can be seen that
coalescence between the two modes is perfect since they are equally damped. The effects of equally and non-
equally damped modes will be illustrated in the last part of this paper. It is then possible to define stable areas
versus unstable areas of the linearized system for a given set of parameters. In the following, the paper is
devoted to nonlinear dynamic computation.

4. Nonlinear dynamic and self-excited limit cycles

The classical approach of nonlinear analysis consists in using temporal integration schemes to compute
nonlinear dynamic solutions. However, it can be observed that this kind of method is costly in terms of
computation time and resources for large finite element models.
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Fig. 2. Stability analysis (a) evolution of the real parts of the stable and unstable modes and (b) coalescence of the two corresponding

eigenvalues.
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Enhanced nonlinear methods have to be employed to save time. Extensive reviews on this topic have been
given in Ref. [30]. In the following part of the paper, an original adaptation of the HBM for self-excited
nonlinear systems will be introduced and discussed.
4.1. The CHBM

In this section, we propose to introduce an extension of the HBM, called the CHBM, for approximating
stationary nonlinear responses of self-excited systems subjected to flutter instabilities. Traditional HBMs are
well-known numerical methods that have been commonly used to solve nonlinear problems in engineering
[30]. However, they do not permit obtaining the stationary nonlinear vibrational responses of self-excited
systems due to the fact that the static nonlinear solution corresponds to the trivial solution of the problem.

In this section, the classical HBM with a condensation procedure on the nonlinear dofs is presented first.
Then the additional constraining condition allowing the determination of the limit cycle amplitudes and an
optimized initial condition process are presented and discussed.
4.1.1. The HBM with a condensation procedure

Considering HBMs, a nonlinear solution is assumed to be a truncated Fourier series and the exact nonlinear
periodic solution XðtÞ is replaced as

XappðtÞ ¼
XNh

k¼0

UC
k cosðkotÞ þ

XNh

k¼1

US
k sinðkotÞ (23)

where UC
k and US

k are vectors of Fourier coefficients and o defines the final pulsation of the nonlinear
limit cycles. It can be seen that o is an unknown parameter in this study since we are in the presence of a
self-excited system and the frequency of the stability analysis differs slightly from that of the nonlinear
steady-state solution. Thus, it cannot be used as a fixed parameter. Nh is the number of harmonic coefficients
retained for the approximated nonlinear stationary solution. Velocities and accelerations are obtained by
derivation of Eq. (23) with respect to the time. The advantage of the harmonic balance method is that it
allows retaining only the first terms of Eq. (23) where, generally, a preponderant energy part of the signal is
concentrated.
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Replacing the approximated solution XappðtÞ in Eq. (11) leads to

RNh
ðtÞ ¼

XNh

k¼0

½ðK� ðkxÞ2MÞUC
k þ ðkoCÞU

S
k � cosðkotÞ

þ
XNh

k¼1

½ðK� ðkxÞ2MÞUS
k � ðkoCÞU

C
k � sinðkotÞ þ FnlðU

C;S
k Þ � Fpiston (24)

Projecting the residue on sine and cosine orthonormal bases, and writing the multi-harmonics vector ~U such
that

~U ¼ ½UC
0

T
UC

1

T
US

1

T
� � � UC

Nh

T
US

Nh

T
�T (25)

leads to the following approximated equation:

K ~Uþ ~Fnlð ~UÞ ¼ ~Fout (26)

with

K ¼

K 0 0 0 0 0

0 Kh;1 0 0 0 0

0 0 . .
.

0 0 0

0 0 0 Kh;k 0 0

0 0 0 0 . .
.

0

0 0 0 0 0 Kh;Nh

2
666666666664

3
777777777775

(27)

and

Kh;k ¼
�ðkoÞ2Mþ K koC

�koC �ðkoÞ2Mþ K

" #
for k ¼ 1 : Nh (28)

Kh;k is the dynamical stiffness matrix associated with the kth harmonic and ~Fout are the external forces.
Eq. (25) gathers the Fourier coefficients that have to be balanced to obtain the periodic solution of the
nonlinear system. Nonlinear force Fourier coefficients depend on ~U and their analytical determination can be
fastidious because of the size of the system and the number of harmonics. The Alternate Frequency Time
Domain Method proposed by Cameron and Griffin [22] permits omitting this issue as outlined below:

~U �!
FFT�1

XðtÞ�!FnlðXðtÞÞ �!
FFT ~Fnlð ~UÞ (29)

When a nonlinear system has a significant number of dofs but only a few of them are related to nonlinear
components, it is possible to reduce system (26) on the nonlinear dofs without loss of accuracy [31,32]. Linear
and nonlinear nodes are separated (i.e. the new vector is such that the nonlinear dofs are stored at the vector’s
end). Eq. (26) may be rewritten in the following form:

Kln;ln Kln;nl

Knl;ln Knl;nl

" #
~Uln

~Unl

( )
þ

0

~Fnl

( )
¼

~Fout;ln

~Fout;nl

( )
(30)

where Uln and Unl define the linear dofs and nonlinear dofs, respectively. Fout;ln and Fout;nl are the associated
linear and nonlinear external forces. In the current model, only an external linear force is available, i.e. the
piston force.

The purpose of the condensation aims at solving the algebraic nonlinear system of equations only for
nonlinear dofs, leaving the other linear ones to be determined later by a linear transformation. Hence,
rewriting (30) with nonlinear dofs leads to

Keq
~Unl þ ~FnlðUnlÞ ¼ ~Feq (31)
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with

Keq ¼ Knl;nl � Knl;lnðKln;lnÞ
�1Kln;nl (32)

and

~Feq ¼ ~Fout;nl � Knl;lnðKln;lnÞ
�1 ~Fout;ln (33)

Thus, system (31) has the size of the number of nonlinear dofs and is lighter than (30). Eq. (31) is rewritten in
the following form to be solved:

f ð ~UnlÞ ¼ Keq
~Unl þ ~Fnlð ~UnlÞ � ~Feq (34)

When optimization is finished and ~Unl is known, linear displacements are obtained with

~Uln ¼ K�1ln;lnð
~Fout;ln � Kln;nl

~UnlÞ (35)

4.1.2. The additional constraining condition

Eq. (34) is a cost function that has a minimum when ~Unl is a solution of the system and can be solved by
nonlinear least-square algorithms such as those of the Gauss–Newton and Leveberg–Marquardt methods. As
stated before, the uniqueness of the solution is lost for systems at the Hopf bifurcation point [11]: the exact and
trivial solution of Eq. (34) corresponds to the static equilibrium point which is unstable. If the classical HBM
is used, the only solution that will be found will be this static solution due to the fact that the residue of
Eq. (34) will be equal to zero for the static equilibrium point. Hence, in order to reject this trivial static
solution and obtain the stationary nonlinear dynamical oscillations that correspond to the limit cycle
amplitudes, it is necessary to add a constraint to the HBM to reach only the minimum of Eq. (34) which
corresponds to the stationary nonlinear periodic motion. The constraining condition will be outlined in this
paragraph.

Considering the nonlinear autonomous system (11) and writing it in the state space gives

_Y ¼ AYþ FP þ FNLðYÞ (36)

with

Y ¼
X

_X

� �
; FP ¼

0

M�1Fpiston

( )
; FNL ¼

0

�M�1Fnl

( )
(37)

and

A ¼
0 I

�M�1K �M�1C

� �
(38)

A nonlinear periodic solution YeðtÞ of Eq. (36) is such that a real T exists so that:

Yeðtþ TÞ ¼ YeðtÞ and Yeðtþ �TÞaYeðtÞ for 0o �ToT (39)

T is the period of the solution. It may be noted that T is an unknown parameter due to the absence of forced
excitations and the difference between the stability frequency analysis and that of the nonlinear system.

By disturbing a solution YeðtÞ with a perturbation �ðtÞ we obtain

YðtÞ ¼ YeðtÞ þ �ðtÞ (40)

And by substituting Eq. (40) into Eq. (36), we obtain

_Ye þ _� ¼ AðYe þ �Þ þ FP þ FNLðYe þ �Þ (41)

By supposing that FNL is C1 class, its development in the Taylor series at Ye at the first order gives

_Ye þ _� � AðYe þ �Þ þ FP þ FNLðYeÞ þ JNL� (42)

with JNL being the Jacobian matrix of the first derivatives of the nonlinear forces FNL with respect to the
periodic solution YeðtÞ.
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Since YeðtÞ is the solution of Eq. (36), Eq. (42) is of the form

_� � A�þ JNL� ¼ J� (43)

with

J ¼ Aþ JNL (44)

where J is the Jacobian matrix of the nonlinear system (36) and depends on the dynamical solution YeðtÞ.
Thus, the eigenvalues of J define the evolution of the limit cycles amplitudes of the nonlinear system. If one or
more eigenvalues are positive, the approximated nonlinear solution of the system is increasing and is governed
by the unstable modes. If all the eigenvalues are negative, the nonlinear solution is decreasing (i.e. we are still
in transient motion). If one eigenvalue is equal to zero whereas all the others are negative, the nonlinear
approximated solution defines the stationary motion of the nonlinear system subjected to flutter instability.

The replacement of the nonlinear contributions FNL by a linear approximation JNL is made to minimize the
difference z

z ¼ FNLðYeðtÞÞ � JNLYeðtÞ (45)

This kind of transformation refers to the equivalent linearization concept proposed by Iwan [33]. Finally, f can
be minimized by using a least square method.

It may be noted that JNL is the Jacobian matrix of the periodic nonlinear forces and does not depend on
time. The eigenvalues of J are clearly related to the evolution of the nonlinear periodic solution YeðtÞ. Indeed,
the real part of the corresponding unstable mode becomes equal to zero while the other real parts are negative
when the computed solution has reached a dynamical steady state.

Hence, the unstable real part is used as an extra equation for the root-finding algorithm. In such a case, it
will converge towards the steady-state solution where the dynamical equation and the real part are minimized.

In conclusion, the final set of equations that has to be minimized is given by the following two functions
f 1ð

~Unl;oÞ and f 2ð
~Unl;oÞ:

f 1ð
~Unl;oÞ ¼ KeqðoÞ ~Unl þ ~Fnlð ~Unl;oÞ � ~Feqo�1 (46)

f 2ð
~Unl;oÞ ¼ jReðlÞjo�2 (47)

where l defines the eigenvalue of J that has the maximum real part. �1 and �2 are chosen residual coefficients.
The complete procedure and description of the CHBM is given in Fig. 3.

4.1.3. The optimized additional initial conditions

As explained previously, the unknown parameters that have to be determined are the Fourier coefficients
~Unl and the frequency o of the stationary periodic signal.
Firstly, when employing the static equilibrium position as the initial condition, computation can be very

difficult and expensive. Hence, they are too far from the final stationary nonlinear dynamical solution and so
another initial estimation must be determined to save time and improve the computation procedure. In this
part of the paper, optimized additional initial conditions based on the complex nonlinear modal analysis [34]
are introduced and discussed.

As explained previously by Sinou et al. [34], starting from the hypothesis that the nonlinear unstable mode
drives the dynamical solution, the evolution of the approximated solution curve, defined by considering only
the contribution of the unstable mode, is given by

Y0ðt; p; lÞ ¼ pðWelt þ W̄el̄tÞ (48)

where W defines the nonlinear unstable mode and W̄ is its conjugate. l is the eigenvalue that corresponds to the
unstable mode and p is an arbitrarily chosen coefficient.

The optimized additional initial conditions are defined as the decomposition into Fourier coefficients of the
previous expression of Y0ðt; p; lÞ. In this case, W is the eigenvector of the nonlinear unstable mode that has
been obtained from the stability analysis. These optimized initial conditions work for quite a wide range of p

and lead to the convergence of the HBM for the first calculation. Afterwards it is easy to compute solutions for
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Fig. 3. Algorithm procedure.
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given sets of parameters starting from previous results. Secondly, when using the HBM it is necessary to know
the frequency of the periodic signal since the dynamical matrices are frequency-dependent and thus
convergence may be laborious or even impossible if the chosen frequency is too approximative. The initial
frequency value is selected to be equal to the unstable mode frequency computed by stability analysis. Fig. 3
displays the algorithm procedure of the CHBM.

5. Results

In this part of the paper, the effectiveness of the CHBM will be illustrated for the nonlinear brake system
presented in Section 2.
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5.1. Nonlinear stationary solutions

Limit cycles are computed for m ¼ m0 for cases with 1, 2, 3 and 10 harmonics. The results are compared with
those obtained by applying temporal integration. The results shown in Fig. 4(a, b) correspond to a physical
interface node where previous static reductions have been performed together with a modal displacement
(c, d). First of all, the case with only one harmonic is discussed. Considering Fig. 4, it clearly appears that the
approximated solution obtained with one harmonic does not converge exactly with the final temporal
solution. However, this solution gives an initial approximation of the limit cycle amplitudes, indicating that
the first harmonic is one of the most significant components for the complete nonlinear solution. Hence,
estimations of the approximated nonlinear solutions computed with 2 or 3 harmonics are considered. The
nonlinear limit cycles show a good fit with the temporal integration results in Fig. 4. Moreover, the computed
unknown frequency from the CHBM is very close to that of the temporal integration since the difference is less
than 0.03% for 1, 2, 3 and 10 harmonics. To make understanding easier for the reader, the evolutions of the
residue of the nonlinear equation are given in Fig. 7 for each case. Computational tests have been performed
by assuming that the frequency of the limit cycles is different from the frequency obtained from the stability
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analysis. For reader comprehension, neglecting changes in the frequency of the self-excited nonlinear
vibrations does not allow a good estimation of the limit cycle amplitudes even if the difference between the
frequency obtained from the stability analysis and the fundamental frequency of the nonlinear oscillations
appears to be very small.

When looking at Fig. 4(c, d), it is obvious that more complex solutions are better estimated when
augmenting the number of harmonics. Slight differences appear between 2 and 3 harmonics because the third
order becomes no more negligible and has to be taken into account for matching curves from the numerical
integration well. This is even true for higher nonlinearities which generally involve coupling between Fourier
coefficients and thus higher-order responses. All the limit cycles computed with 10 harmonics match the
numerical integration correctly. Table 1 summarizes the results and relative errors for the three cases studied.

Finally, Fig. 5 shows the power spectrum ratios of the limit cycles computed at m ¼ m0 for each harmonic.
Computation is done by summing power of each dof for a given harmonic:

Pj ¼
1

2

XNdof

i¼1

ða2
i;j þ b2

i;jÞ (49)

where Pj is the power of the jth harmonic and ai and bi are the cosine and the sine coefficients of the ith dofs.
Then, the power ratio is computed. This consists in dividing each power harmonic by the total power of

limit cycles computed by the temporal integration:

Rj ¼
Pj

Ptemporal
(50)

where Rj defines the power ratio of the jth harmonic and Pj is the power of the jth harmonic of the CHBM and
Ptemporal is the total power of the temporal integration solution. Most of the energy appears to be concentrated
in the first terms of the Fourier series. Table 1 displays the mean error between the numerical integration and
Table 1

Relative error for 1, 2, 3 and 10 harmonics (H)

1 H 2 H 3 H 10 H

Average relative error (%)

Displacement 33.5 0.3 0.1 0.1

Velocity 30.3 4.9 4.8 4.2

1 2 3 4 5 6 7 8 9 10
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Fig. 5. Power ratio for the first 10 harmonics.



ARTICLE IN PRESS
N. Coudeyras et al. / Journal of Sound and Vibration 319 (2009) 1175–11991188
the CHBM for the four different cases. As expected, the error decreases as the number of harmonics increases.
Calculations with 10 harmonics have been carried out to ensure the convergence of computed solutions
towards numerical integration and negligible differences have been detected. Moreover, limit cycles with 3
and 10 harmonics are close and the mean error of both methods is almost equal. Even when using only
3 harmonics for computing, the steady-state solution seems to be adequate in the present study. It can be seen
that it is easy to consider a large number of harmonics with the proposed method. Furthermore, considering
the limit cycle frequency as an unknown is fundamental in CHBM; otherwise, the computation of the
dynamical solution fails.

5.2. Convergence and time computation

This section concerns the convergence of the CHBM. Fig. 6 displays the evolutions of real parts during the
optimization computations. Whatever the number of harmonics, the real part converges to zero at the end of
optimization, indicating the nonlinear stationary self-excited vibration of the brake system. Fig. 7 shows the
residue norm for every iteration. Although using several harmonics generally involves many iterations, only 11
iterations were needed for 2 and 3 harmonics in this case. Using 10 harmonics requires the convergence of 5
additional iterations to converge properly. Computation with 1 harmonic is not significant since the final
approximated solution does not exactly match with the exact nonlinear solution. Thus, it appears that the
algorithm has difficulties in finding a root and seeks a convergence path that is costly in terms of iterations.
Table 2 displays the computation time needed by temporal integration and CHBM to reach the dynamical
0 10 20 30 40 50 60
−5

0

5

10

15

R
ea

l P
ar

t

Iterations

2 4 6 8 10 12 14 16
−0.5

0

0.5

1

1.5

2

2.5

R
ea

l P
ar

t

Iterations

Fig. 6. Evolution of the real part: —, 1 harmonic; - -, 2 harmonics; -.-, 3 harmonics; . . . ; 10 harmonics (a) all cases and (b) zoom on 2, 3

and 10 harmonics.

0 10 20 30 40 50

100

102

104

N
or

m
 o

f 
R

es
id

ue

Iterations

2 4 6 8 10 12 14

10−2

100

102

104

N
or

m
 o

f 
R

es
id

ue

Iterations

Fig. 7. Evolution of residues during optimization: —, 1 harmonic; - -, 2 harmonics; -.-, 3 harmonics; . . . ; 10 harmonics (a) all cases and (b)

zoom on 2, 3 and 10 harmonics.



ARTICLE IN PRESS

Table 2

Performance computation

Methods Temporal integration HBM 1H HBM 2H HBM 3H HBM 10H

Iteration numbers – 60 11 11 16

Time computation 200 h 1550 s 485 s 753 s 3591 s

Disc storage 1.4Go 4 ko 6 ko 8 ko 9 ko
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solution. Both methods were run on MATLAB. Even though the number of iterations for both 2 and 3
harmonics is equal, the computation time is somewhat different with, respectively, 485 and 753 s required. This
is obviously due to the fact that more harmonics mean more unknowns and thus more Jacobian evaluations in
the optimization process. The computation time can be improved by using continuation methods, but this is
not the aim of the paper. Using 10 harmonics is costlier and needs about 1 h CPU time. However, CHBM
computation time is still very low compared to the 200 h needed for temporal integration. Moreover, massive
disc storage is needed for temporal integration with more than 1 gigabyte of stored data (each dof is computed
at each time t and stored on the disc) compared to a few kilobytes used by the Fourier coefficients of the
CHBM. In the following part of this paper 3 harmonics will be used, regarding noticeably low relative errors
both in displacement and in velocity. Moreover, it offers a good compromise between accuracy and
computation time. In conclusion, the proposed CHBM is well designed for a self-excited system because the
results are accurate regarding the temporal approach and it is cheaper in terms of time consumption and disc
storage.

6. Parametric studies: interest of the CHBM

In this section of the paper, parametric studies will be undertaken for both the stability analysis and the
limit cycle amplitudes.

6.1. Friction coefficient

The friction coefficient is generally considered as one of the most important parameters in brake systems.
Good brake performances often signify a high friction coefficient yielding a high sound pressure level.

Limit cycles are computed for m ¼ m0, m ¼ 1:2m0, m ¼ 1:4m0, m ¼ 1:6m0 and m ¼ 2m0 and displayed in Fig. 8.
In the rest of the study, the real parts as well as the frequencies computed and displayed in the tables are

normalized in relation to those in the nominal model (i.e. P0; ks; m0 and D1 ¼ D2 ¼ 1). To demonstrate the
interest of considering the frequency as an unknown in the nonlinear method proposed in this paper, Table 3
gives the difference Df between the initial frequency of the unstable mode that has been obtained via the
stability analysis for the nominal parameters and the final frequency of the self-excited vibration that has been
obtained via the nonlinear method.

Considering Fig. 8, it clearly appears that increasing the friction coefficient involves higher vibration
amplitudes for both the pad and the disc. Moreover, evolutions of the equilibrium point are observed, as
indicated in Fig. 8(a).

It can be seen that the CHBM allows determining the limit-cycle amplitudes not only in the vicinity of the
Hopf bifurcation point but also far from the Hopf bifurcation point m0. In Table 3, a difference between the
frequency of the limit cycle amplitudes and the frequency of the unstable mode can be observed.

6.2. Piston pressure

A variation in piston pressure has an effect on the pressure distribution at the disc/pad interface and the
stability analysis of the brake system may be affected. Eigenvalues are computed for three different pressures
0:8P0, P0 and 1:2P0 where P0 is the operational piston pressure. The evolutions of the real parts and the
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Table 3

Hopf bifurcation points and frequencies for variable friction coefficient

Case Values Df (Hz)

1 m0 �0.044

2 1:2m0 0.45

3 1:4m0 0.71

4 1:6m0 0.90

5 2m0 1.2
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Fig. 8. Limit cycles for pad and disc nodes: , m0; —, 1:2m0; - -, 1:4m0; . . . ; 1:6m0; -.-., 2m0 (a) pad and (b) disc.
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coalescences of the unstable and stable modes are illustrated in Fig. 9(a, b). Table 4 gives the evolution of the
Hopf bifurcation point. It appears that the pressure has an important effect on the stability. Basically, a higher
piston pressure increases the degree of instability by moving the Hopf bifurcation point towards lower values
without modifying the pattern shapes of the evolution of the real part or frequency coalescences. However, the
frequency coalescence point is affected by a change in piston pressure; typically, a high piston pressure results
in a higher coupled frequency.

Fig. 9(c, d) illustrate the limit-cycle amplitudes for the pad and the disc. To facilitate comprehension, the
nonlinear vibrations are obtained at a fixed normalized friction coefficient m ¼ 1:05m0. Hence, pad interface
deformation is equivalent for the three cases although the static positions are more affected for nodes at the
pad/piston interface (see Fig. 9(c)). This fact can be clearly explained by considering that higher piston
pressure results in greater pad compression. The piston/pad interface is moved towards the pad/disc interface.
The disc deformation interface (Fig. 9(d)) is slightly impacted with an increase in vibration amplitudes as the
piston pressure increases.

6.3. Contact stiffness

This part is devoted to the analysis of contact stiffness applied to the problem of the brake squeal
phenomenon. This parameter is very dependent on contact body stiffness and contact surface shapes. Since the
disc is about a thousand times stiffer than the pad, contact stiffness usually depends on frictional materials.
Both analyses are performed for three contact stiffnesses corresponding to a variation of the pad friction
material’s properties. For the sake of simplicity, ks is considered as a function of linear kl and nonlinear knl

contact stiffness springs, ks ¼ f ðkl ; knlÞ. The evolution of the real parts and frequencies of the stable and
unstable modes is shown in Fig. 10(a, b). Table 5 gives the evolution of the Hopf bifurcation point. As for the
piston pressure case, an increase in the contact stiffness destabilizes the nonlinear system by decreasing the
Hopf bifurcation point. Nevertheless, the patterns look similar and only a translation is observed for varying ks.
Frequency lock-in is changed and a higher contact stiffness results in augmentation of the coalescence
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Table 4

Hopf bifurcation points and frequencies for variable piston pressure

Case Values m=m0 Df (Hz) Df (Hz) at m ¼ 1:4m0

1 P0 1 0.14 0.72

5 0:8P0 1.04 0.15 0.72

6 1:2P0 0.96 0.13 0.72
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Fig. 9. Influence of piston pressure: —, P0; - -, 0:8P0; . . . ; 1:2P0 (a) evolution of real parts, (b) frequency coalescences; limit cycles for (c)

pad and (d) disc.
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frequency. This is quite logical since high contact stiffness tends to rigidify the whole system and thus increase
the resonance frequencies.

When looking at limit cycles in Fig. 10(c, d), which are computed for m ¼ 1:03m0, it can be seen that increasing
the contact stiffness decreases the nonlinear vibrations. Nevertheless, amplitudes do not change with the same
ratio compared to the variable stiffness. A 30% increase in stiffness only changes the amplitudes by a factor of 1.1
while a 30% decline in contact stiffness results in lowering the limit cycle amplitudes by a mean factor of 3.3.
Moreover, the static position of the equilibrium point can change drastically, as illustrated in Fig. 10(c).
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Fig. 10. Influence of contact stiffness: —, ks; - -, 0:7ks; . . . ; 1:3ks (a) evolution of real parts, (b) frequency coalescences; limit cycles for (c)

pad and (d) disc.

Table 5

Hopf bifurcation points and frequencies for variable stiffness

Case Values m=m0 Df (Hz) Df (Hz) at m ¼ 1:4m0

1 ks 1 0.08 0.72

7 0:7ks 1.03 0.08 0.73

8 1:3ks 0.98 0.09 0.70

N. Coudeyras et al. / Journal of Sound and Vibration 319 (2009) 1175–11991192
Hence, contact stiffness seems to be a key parameter in reducing brake squeal noise; nevertheless, it has to
satisfy other specifications which concern brake efficiency that are considered as the most important factors.

6.4. Damping

Damping seems to be a major parameter in reducing disc brake squeal. Squeal problems are resolved by
applying damping shims on back plates, which works well sometimes. However, damping influences self-
excited systems in which the coalescence of two modes is not yet fully understood and many studies have been
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performed to study this phenomenon. Hoffmann and Gaul [35] performed a stability analysis of a two-dof
system and showed that adding damping without precaution can lead to a paradoxical effect, i.e. it can
destabilize the system. Sinou and Jézéquel [36] studied the impact of modal damping on both stable and
nonlinear systems and found that non-equally damped modes lead to a destabilization of the system and
increase the amplitudes of limit cycles. Shin [37] worked on a two-dof system representing both pad and disc
modes and showed that the equally damped case stabilizes the system by diminishing limit cycles when a
higher damping is applied but this is no longer the case when adding damping on only one mode. While the
amplitude of the more highly damped system decreases, the amplitude of the other one increases. More
recently, Fritz et al. [38,39] performed stability analyses on a complete finite element model brake system. He
confirmed that the ratio of the damping of the two modes involved in squeal is an essential key for controlling
the stability of systems. For equally damped modes, the stability curves are lower and thus instability occurs
for a higher friction coefficient. Nevertheless, in the case of large non-equally damped modes a smoothing
effect occurs and pushes the Hopf bifurcation point towards lower values; thus, instability appears for a lower
friction coefficient compared to the equally damped case.

In the following, we investigate the effects of modal damping on stability and its impact on limit-cycle
amplitudes. Both the cases of equally and non-equally damped modes will be considered.
6.4.1. Equally damped modes

D1 and D2 are considered as the respective modal dampings of Modes 1 and 2 which are involved in
instability. Three cases at equally distributed modal dampings are investigated.

Firstly, Fig. 11(a, b) illustrates the evolutions of the real parts and the frequencies of the unstable and stable
equally damped modes. As explained previously by Fritz et al. [38,39], increasing equal modal damping has a
lowering effect and as a consequence a stabilizing effect by lowering the branches of the real part in the stable
area. The critical Hopf bifurcation point is moved towards higher values for higher equal modal damping.
Evolutions of the Hopf bifurcation point are given in Table 6. Moreover, it appears that the frequency lock-in
phenomenon remains identical in the three cases. Mode 1 turns out to be the unstable mode while Mode 2 is
the stable one.

Secondly, Fig. 12(a, b) display nonlinear behavior and the limit-cycle amplitudes for one dof of the pad and
one dof of the disc computed for m ¼ 1:07m0. The effects of damping appear to be very complex. Not only limit
cycle amplitudes but also changes in the static position of the limit cycles are observed, as indicated in Fig.
12(a). Surprisingly, the highly damped case does not necessarily induce low vibration amplitudes. Although
the vibration amplitudes of the pad are slightly higher for the lower damped case, the highest dynamical
response of the disc is found for the highest damped case, with an amplitude ratio of almost 4 in relation to the
lowest damped case.

Fig. 12(c, d) show limit cycles computed by increasing the friction coefficient (m ¼ 1:4m0 in the current case).
As explained previously in Section 6.1, a higher friction coefficient involves higher limit-cycle amplitudes. It
can be seen that the effects of equally damped modes cannot be neglected and that the combined effect of the
friction coefficient and damping is not trivial. For example, it appears that the influence of damping is weaker
for m ¼ 1:4m0 compared to the case in the vicinity of the Hopf bifurcation point at m ¼ 1:07m0. For the disc, the
amplitude is still the highest for the larger damped case, but the amplitude ratio in relation to the lowest
damped case is less significant, with a value of 1.3.

Moreover, it can be noted that the nonlinear amplitudes of the limit cycles do not follow proportionally the
growth rate of the positive real part and the commonly held belief that the added damping would result in
lower vibrations is not necessarily true.
6.5. Non-equally damped modes

Now we investigate the influence of non-equally damped modes for two cases that are D1=D2 ¼ 0:5 and 0.2.
Fig. 11(c, d) illustrates the associated evolutions of the real parts and frequencies of the unstable and stable
equally damped modes. The reference remains the equally damped case where D1=D2 ¼ 1. It should be noted
that the damping of stable Mode 2 turns out to be higher.
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Fig. 11. Evolution of real parts and frequency coalescences (a, b) equally damped: —, 1st case; - -, 2nd case; . . . ; 3rd case and (c, d) non-

equally damped: —, 1st case; - -, 6th case; . . . ; 7th case.

Table 6

Hopf bifurcation points and frequencies for damping parameters

Case D1 D2 D1/D2 mc=mH Df (Hz) Df (Hz) at m ¼ 1:4m0

1 1 1 1 1 0.21 0.72

2 5 5 1 1.01 0.18 0.70

3 10 10 1 1.07 0.10 0.63

4 1 2 0.5 0.97 0.68 1.28

5 1 5 0.2 0.84 1.64 1.98

6 2 1 2 0.96 �0.50 0.24

7 5 1 5 0.84 �0.87 �0.18
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The lowering effect due to high damping remains but its stabilizing effect is counterbalanced by the well-
known smoothing effect occurring in the vicinity of the Hopf bifurcation point (see Fig. 11(c)), as mentioned
by Hoffmann and Gaul [35], Sinou and Jézéquel [36], Shin et al. [37] and Fritz et al. [38,39]. The real part
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branches of non-equally damped modes split with a smoother slope and become positive at a lower friction
coefficient than the real part branch of the equally damped mode. This effect is stronger for higher
asymmetrical modal damping cases, for example when D1=D2 ¼ 0:2.

Fig. 13(a, b) illustrates the nonlinear limit-cycles that are computed at m ¼ m0. The largest limit-cycle
amplitudes appear for the lowest damping ratio, D1=D2 ¼ 0:2. More complex behavior is found for pad
deformation when D1=D2 ¼ 0:2. With a higher friction coefficient, the real part curves cross each other at
around m ¼ 1:03m0 and case D1=D2 ¼ 1 has the larger positive real part, contrary to the D1=D2 ¼ 0:2 case
which becomes the most stable beyond m ¼ 1:03m0. Fig. 13(c, d) presents the limit cycles of both the nodes
considered previously, computed at m ¼ 1:4m0.

Large pad amplitudes are obtained for low damping ratios while they are considered as the most stable cases
at m ¼ 1:4m0 by the stability analysis. Nevertheless, the highest amplitudes for the disc are derived from the
most unstable case, which is the equally damped one. It can be clearly observed that it is not possible to
establish a link between the values of the real parts and corresponding vibrating states since they can be higher
or lower depending on the different effects of the physical parameters on both stability and nonlinear
behavior. Moreover, it is noted that the static equilibrium point changes with the variation of non-equally
damped modes, as indicated in Fig. 13(a).
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To further investigate the influence of modal damping, we propose to invert damping ratios D1=D2 ¼ 2,
D1=D2 ¼ 5 and perform a stability analysis and determine the nonlinear limit cycles. It should be borne in
mind henceforth that unstable Mode 1 is the more highly damped one, whereas the damping of stable Mode 2
is decreased. The evolutions of the real parts and frequencies of the stable and unstable modes are similar to
the previous case; thus, the conclusions on stability are identical.

Fig. 14(a–d) illustrates the nonlinear limit cycles for m ¼ 1:07m0 and 1:4m0, respectively. In the vicinity of the
Hopf bifurcation point (i.e. m ¼ 1:07m0), the highest amplitude is still obtained for the largest difference in
damping, i.e. D1=D2 ¼ 5, but with an amplitude ratio of almost 57 compared to an amplitude ratio of 37 for the
preceding case. When considering a case far from the Hopf bifurcation point (at m ¼ 1:4m0 for example), the
evolution of the limit cycles is complex and it appears to be more difficult to give a general rule on the effects of
damping. For example, although the real part of the unstable mode for the more asymmetrical damping case (i.e.
D1=D2 ¼ 5) is the lowest one, this configuration involves the higher vibrating state for both the pad and the disc.
It must be compared to the previous case study where the more asymmetrical damping case (i.e. D1=D2 ¼ 0:2)
exhibited higher amplitudes only for the pad. Here, the unstable mode is the more damped one and even if the
corresponding real part is below that of case 1, the corresponding amplitudes are higher.
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Inverting modal damping has a weak influence in the vicinity of the Hopf bifurcation point, as can be seen
in Figs. (13)(a, b) and (14)(a, b), but it has a strong effect on disc deformation when augmenting the friction
coefficient. When the unstable mode is the more weakly damped one, the limit cycles are smaller than the
equally damped case by a factor of 2 (Fig. 13(d)), but the conclusions are totally different when inverting
the damping ratio: The corresponding limit cycles are about 3 times larger than for the equally damped case
(Fig. 14(d)).

This example shows that inverting modal damping distribution has considerable effects not only on the
stability of the system but also on the nonlinear amplitudes of the limit cycles. For example, case D1=D2 ¼ 0:2
displays the smallest disc oscillations while case D1=D2 ¼ 5 has the largest disc oscillations and the
conclusions for finding the best model are totally different. Considering the previous results, it appears that
structural damping is a key factor when dealing with nonlinear autonomous systems, but nevertheless it is a
complex phenomenon and it has to be considered with care to ensure a good silent brake system design. Not
only the quantity but also the distribution of damping have to be taken into account thoroughly to avoid
unexpected results.
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7. Conclusion

In this paper a novel nonlinear method has been proposed called the CHBM. This original approach allows
the determination of the stationary nonlinear periodic solution of a nonlinear mechanical system subject to
flutter instability, by the addition of an extra-constraint in the classical HBM. This additional constraint
allows eliminating the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that
would be obtained by applying the classical HBM) and gives only the stationary nonlinear oscillations.
Moreover, the frequency is added as an unknown since the frequency of a self-excited system is not known a

priori and may change for varying parameters. Also, the dynamical solution cannot be computed if only using
the frequency resulting from the stability analysis. An application to disc brake squeal was performed to
illustrate the effectiveness of the nonlinear method.

Numerical results correlated well with a classical time domain algorithm in terms of both amplitude and
frequency. The results of the CHBM are highly dependent on the number of harmonics. A power ratio
computation shows that the major part of the energy is concentrated in the first harmonic, but retaining only
the latter does not lead to a steady-state solution. In order to adapt to the complex behaviors of the solutions,
more harmonics are required in the Fourier series. The computation time of the new method is very short
compared to that of a classical temporal integration algorithm and thus is well designed for intensive
computation in the case of parameter-dependent systems.

The effectiveness of this method’s application to a disc brake system is emphasized in the last part of the
paper, which describes the parametric studies performed. Fast limit-cycle computations were achieved for a
large number of operational parameters and conclusions were obtained. The complementarity between the
stability analysis and the complex nonlinear vibrational behavior appears to be essential for carrying out a
complete design study of a brake system. Moreover, it was shown that not only the friction coefficient but also
piston pressure, nonlinear stiffness and structural damping are important factors to take into account to avoid
poor design.
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